

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式 2015年3月5日 18:00~ 於: 仙台国際ホテル

Nd-Fe-B薄膜におけるNd₂Fe₁₄B/Nd-rich 界面組織と保磁カメカニズム

東北大学 大学院工学研究科 知能デバイス材料学専攻

助教 松浦 昌志

2000 甲

研究背景 - Nd-Fe-B系焼結磁石 -

エアコン用モ

Dy; 10 wt%

2.0

発電機

高

HEV, EV用

2.5

モータ

保磁力, H_{cl} / MAm⁻¹ Dy添加のメリット・デメリット 〇保磁力向上⇒耐熱性向上 ×最大エネルギー積の低下 ×供給不安と価格の乱高下

1.5

[1]一般社団法人 電子情報技術産業協会(JEITA)データベース

HDD, OA, 通信機器

など 40%

2007年

[2]佐川眞人 監修, ネオジム磁石のすべて(アグネ技術センター), (2011).

<u>Nd-Fe-B系磁石の磁気特性</u>

	$J_{\rm r}/{ m T}$	H _{cJ} / kAm⁻¹	<i>(BH)_{max}/</i> kJm ⁻³
理論値	1.60	5330	512
報告值 ^[3]	1.56	653	474
到達率(%)	97	12	93

Dyフリーでも高保磁力発現の可能性あり

<u>Nd-Fe-B系焼結磁石の組織</u>

主相:Nd₂Fe₁₄B相, 粒界相:Nd-rich相

[3] 播本、松浦, 日立金属技報, Vol. 23, 69 (2007).

<u>Nd-Fe-B系焼結磁石の保磁力機構</u>

Nd-Fe-B系焼結磁石粒界のTEM像^[4]

Nd2Fe14B相どNd-rich相の
界面が保磁力に影響

課題 - Nd-Fe-B系焼結磁石の粒界組織 -

131fee

220 cc

311fee

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式

fcc NdOx相がNd2Fe14Bとの界面に存在[5]

界面にC-Nd₂O₃ (Ia3)が形成^[6]

<u>焼結磁石中; 複数のNd-O相を含むNd-rich相</u>

[5] T. Fukagawa and S. Hirosawa, J. Appl. Phys., **104**, 013911 (2008).
[6] D.W. Park *et al.*, J. Appl. Phys., **107**, 09A737 (2010).

Nd-rich相の結晶構造は酸素量によって変化^[7]

[7] W. Mo et al., Scripta Mater., 59, 179 (2008).
[8] T.B. Massalski et al., Binary alloy phase diagram, ASM internatinal.

アプローチ - Nd₂Fe₁₄B/Nd-richモデル界面-

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式

OHOKU <u>薄膜技術を用いたモデル界面</u>		<u>Nd-Fe-B層成膜</u>	<u>酸化処理</u>		
Nd-rich	<u>焼結磁石</u>	UHVスパッタリング 到達真空度;1×10 ⁻⁷ Pa	Oxidized under Ar gas Oxidized layer		
Nd ₂ Fe ₁₄ B	・酸素含有量; 700 mass ppm~程度 ^[9] ・不純物元素(C, Al, Cu, Ga等)の混入	Nd-Fe-B Ta(001) MgO(001)	Nd-Fe-B Ta MgO(001)		
		Atmosphere	Oxygen content [mass ppm]		
Nd-rich	<u>薄膜</u>	UHV; ~10 ⁻⁷ Pa	~2x10 ⁻⁷		
Nd ₂ Fe ₁₄ B	・酸素量のコントロール可	Low vac.; ~10 ⁻² Pa	~ 0.02		
Under layer	·不純物元素抑制	Ar gas	~ 2		

各種Nd-rich相(出現相)が、界面組織 および保護力へ及ぼす影響を調査可能

薄膜技術を用いて酸素量を制御した モデル界面の作製

目的:酸素濃度の異なる雰囲気下で酸化させたNd-Fe-B薄膜の保磁力 に及ぼすNd₂Fe₁₄B/Nd-rich界面組織,出現相の影響調査

結果と考察-熱処理に伴う磁気特性と出現相変化-

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式

保磁力回復挙動、Nd-O相が熱処理によって変化

各種Nd-O相がNd₂Fe14B/Nd-rich界面組織、保磁力に影響を示唆

M. Matsuura et al., Mater. Trans., 50, 2139 (2009).

-Nd-Fe-B薄膜の熱処理に伴う組織変化-

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式

熱処理に伴い保磁力と出現相、界面組織が変化

M. Matsuura et al., Mater. Trans., 51, 1901 (2010). M. Matsuura, et al., J. Phys; Conference series, 266, 012039 (2011).

- 界面における出現相の変化 -

<u>界面における出現相の存在割合</u>

保磁力<mark>低下⇒</mark> 40%を超えるhcp Nd₂O₃相出現 保磁力回復⇒ 50%を超える非平衡相出現

保磁力と出現相の関係を定量的に示した

M. Matsuura *et al., IEEE Trans. Magn..,* **47**, 3273 (2011). 松浦 昌志 ら, 日本金属学会誌, **76**, 65 (2012).

- 界面における格子定数変化 -

Nd₂Fe₁₄B/Nd-rich<mark>界面における各種</mark> Nd-rich相の格子定数変化を調査

Nd-O相の格子定数変化* ✓C-Nd₂O₃, (fcc NdO_x); 5~10% ✓hcp Nd₂O₃ ; ~1%

界面における歪の影響10]

シミュレーションにより、 $Nd_2Fe_{14}B/Nd$ -rich界 面での歪が保磁力に影響することを報告^[10]

[10] G. Hrkac et al., Appl. Phys. Lett., 97, 232511 (2010).

C-Nd₂0₃, fcc NdO_x, (amorphous)相は格子定数に幅を持つ 予 用面における歪の緩和 予 保磁力低下の抑制を示唆

* M. Matsuura, et al., Proceeding of REPM' 12, Nagasaki, Japan, 2012.

◆保磁力と出現相の関係の定量評価を実現

- ✓保磁力低下に伴いNd₂Fe₁₄B/Nd-rich界面においてhcp Nd₂O₃相が40%以上出現した。このとき、界面では~3 nmの欠陥が見られた。
- ✓保磁力回復に伴いNd₂Fe₁₄B/Nd-rich界面にて、非平衡相(C-Nd₂O₃, amorphous) が支配的に存在。
- → hcp Nd₂0₃相の抑制.非平衡相の形成により保磁力低下を抑制

◆各出現相の、界面近傍での格子定数変化を示した

- ✓界面において、hcp Nd₂0₃相の格子定数はほとんど変化しない(~1%)ことが分かった。
 ✓界面において、C-Nd₂0₃、fcc Nd0_x相の格子定数は5~10%の幅を持つことが分かった。
- → 界面の歪の緩和により、保磁力低下の抑制を示唆

本成果に関連する主な発表論文

- Masashi Matsuura, et al., J. Appl. Phys., **105**, 07A741 (2009).
- Masashi Matsuura, et al., Mater. Trans., 50, 2139 (2009).
- M. Matsuura, et al., J. Phys.; Conference series, 200, 092019 (2010).
- Masashi Matsuura, et al., Mater. Trans., **51**, 1901 (2010).
- Masashi Matsuura, et al., J. Phys.; Conference series, 266, 012039 (2011).
- <u>M. Matsuura</u>, et al., IEEE Trans. magn., 47, 3273 (2011).
- <u>松浦 昌志 ら</u>, 日本金属学会誌(解説論文), 76, 65 (2012).
- M. Matsuura, et al., Proceeding of the 21st Workshop on Rare-Earth Permanent Magnets and their applications (REPM' 12), Nagasaki, Japan, 2-5 September 2012.

公益財団法人トーキン科学技術振興財団 平成26年度トーキン科学技術賞贈賞式

謝辞

本研究の遂行にあたり、多大なご指導・ご鞭撻を賜り ました、東北大学大学院工学研究科 杉本諭 教授に 心より御礼申し上げます。

また、岡田益男先生、高梨弘毅先生、今野豊彦先生、佐久間 昭正先生、手東展規先生、後藤龍太博士、小林恒誠博士、 宮崎孝道博士をはじめ、大変多くの先生方、スタッフの方、先 輩方、学生の皆さまにご指導・ご助言・ご協力を頂きました。 心 より感謝申し上げます。